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I NOMENCLATURE

3 a characteristic length, half width of contact zone or length of slider

ci  specific heat of region i

3 D Deborah number, 1ioUr/(Ga)

d surface displacement

a3 dimensionless surfacc disp!acement. 2rd/a 2

E elastic modulus

i effective strain rate, see Equation (20)

F derivative function, di'/d

f frictional force per unit transverse length

3 f dimensionless frictional force, f/(ak)

G shear modulus

3 h coating thickness

h constant related to flow, 2Q/(uoh)

SI * dimensionless constant, h*/ho

ho  characteristic coating thickness, minimum coating thickness under linear slider

h1  maximum coating thickness under linear slider

I dimensionless coating thickness, hl/h 0

i thermal conductivity of region i

Ik shear yield stress

k dimensionless stress, k/k05 ko characteristic value of shear yield stress

p pressure

dimensionless pressure, p/po

dimensionless pressure, pho/(ak)

Ph maximum Hertz pressure

Po reference pressure, taken as Ph for Hertz contact

0 volumetric flow per unit transverse length

qj,q 2  heat flux crossing surface of region 1,2

Al dimensionless heat flux, ql/(*UrSTW)

5 Pi Peclet number for region i, uia/K1

Ri  volumetric rate of heat generation for region I

3 r cylinder radius

s slide to roll ratio, Au/u r

S dimensionless shear rate parameter, Iours/(htco)
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3 tr residence time in contact zone

T temperature

3 dimensionless temperature rise, (T - To)/Tr

To  surface temperature at start of contact

3 Tr reference temperature rise, ursa*rco/Ki

u velocity in x direction

a dimensionless velocity, u/uo

ur rolling speed

u0  characteristic velocity in x direction
ul,u 2  speed of region 1,2
v velocity in y direction

3 dimensionless velocity, va/(hu 0 )

W load per unit transverse length

3 W dimensionless load, Who/(a 2k)

x coordinate in along surface

y coordinate perpendicular to surface

a viscosity - pressure coefficient

a dimensionless coefficient, aphI3 limiting shear stress - pressure coefficient

dimensionless coefficient, PPh3 viscosity - temperature coefficient

"i dimensionless coefficient, yTr

3 Ah inclination of slider, h1 - ho

AT, temperature rise on surface 1 at center of contact for uniform flux

AT3  temperature rise in coating

Au slip rate, u1 - u2

Auh slip velocity at y = h

Au0  slip velocity at y = 0

8 dimensionless parameter, (ho/a)(ko/po)

a 0* dimensionless parameter, maximum of 8 and (a/h0 )2

i shear rate

3I dimensionless coordinate, y/a

Ki  thermal diffusivity for region I

I limiting shear stress - temperature coefficient

A. dimensionless coefficient, ,Tr
p viscosity

i1o  viscosity at ambient pressure and temperature To
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11 dimensionless viscosity, 1,/1 o

dimensionless viscosity-speed parameter, lLuo/(hok)

3 critical value of a beyond which V = 0

v Poisson's ratio

E dimensionless coordinate, x/a

Pi density of region i

a effective stress, see Equation (19)

ax'y Y coordinate stresses in x,y directions

iXa (y dimensionless coordinate stresses, ax/po, ay/p o

Uz  dimensionless stress in transverse direction

T shear stress

3 dimensionless shear stress, T/k

i dimensionless shear stress, r/,rco

3 average shear stress in contact zone

T dimensionless average shear stress, i/ co

r I' shear stress without regard to limiting shear stress

i' dimensionless shear stress, 'r'/ 0co

i' time derivative of T'

Ic characteristic shear stress function used in rheological model

ic dimensionless shear stress, rc/Tco3 CO characteristic shear stress at ambient pressure and temperature To

m limiting shear stress

5 m  dimensionless limiting shear stress, "m/'cO

T h shear stress at y = h

ih dimensionless shear stress, -Th/k

TO shear stress at y = 0

i o  dimensionless shear stress, -To/k

Imax maximum of i o and i h

0 function characterizing rate dependence in rheological model

5 X limiting shear stress ratio, rm/fc, presently taken near 1

4 flux partition fraction, see Equation (11)

3 Subscripts

1 upper region (see Figure 1)

2 lower region (see Figure 1)

3 coating

i region variable, i = 1,2,3

particular point in discretized grid, used in finite difference solution
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I I. INTRODUCTION

3 Solid lubricants have been in use for many years in situations where extreme temperature, pressure or

environmental conditions prohibit the use of liquid lubricants. Present requirements for high temperature

and hostile environment applications create an increasing need for improved solid lubrication. Although

considerable strides have been made in the development and implementation of solid lubricants, they have

been somewhat hampered by a lack of quantitative methods for assessing the performance of solid films.

This study is intended to represent a step towards the objective of developing a tractable means for

predicting the performance of solid lubricating films in machinery based upon property data obtained under

laboratory conditions. Performance characteristics under consideration include surface and sub-surface

3 temperature, friction, operating coating thickness and wear rates. These quantities may in turn be used to

establish the useful life and applicability of a solid lubricant for a given application.l
Considerable emphasis is placed here on the need for a tractable approach. Although an ultimate goal of

predicting performance of solid lubricants based upon molecular structure should be pursued, a shorter term

approach is also necessary to satisfy current needs even though it might require additional property data.

This approach involves treating the solid lubricant as a continuum and modeling the rheology of the contact

based on properties of both the lubricant and its immediate surroundings.

3 This investigation deals with an idealized isotropic lubricant under conditions of plane strain. Normal

stresses due to loading are assumed in general to be high compared with the shear yield stress of the

3 lubricant. The film is assumed to be thick compared with asperity heights but thin compared with contact

lengths. In the first part of the study, as described in the next section, the existence of such a film is

3 assumed and efficient algorithms are generated for predicting trqctions based on contact geometry,

operating conditions and the rheological model for the lubricant. Rheological models include a linear elastic

component, a non-linear rate dependent component and a limiting shear stress. Properties are allowed tc

be dependent on both temperature and pressure. A thermal analysis is included and coupling between the

effects of heat generation and temperature dependent properties is treated. Numerical examples are

presented which show the influence of the various parameters on shear stress behavior. The second part

of the study, described in Section III, deals with the ability to form and sustain the films assumed above and

* limitations that occur when the slip rates are high and is intended to provide guidance regarding the range

of validity of both the present and previous traction models.I

I



I
I II. INITIAL TRACTION ANALYSIS

3 A combined thermal-elastic-plastic-creep model is presented here for estimating tractive forces resulting from

shearing of solid films. Models of this type have been used successfully in the past for predicting tractive5 forces arising in concentrated contacts with liquid lubricants. Under the extreme pressures characteristic

of these contacts, liquids behave similarly to solids in that elastic properties become significant at low shear

3 rates and plastic yielding occurs at higher shear rates.

It will be assumed that the film is thick compared with the surface asperities on the mating surface and the

load is sufficiently high that the asperities are fully imbedded in the film. A nearly hydrostatic state of stress

will be assumed to exist in the contact zone. The normal loading will affect the size of the contact zone for

elastic substrates and the pressure distribution within the contact zone. It is assumed however, that the only

dependence of shear forces on the normal loadinn arises from pressure dependence of mechanical

3 properties.

Based on the above assumptions the initial traction model will be an adaptation of that used for
elastohydrodynamic applications . The extensions put forth here will include coupling with a fairly general

thermal analysis and the ability to treat pressure distributions other that Hertzian.

The development of the traction model contained herein, will proceed with a formulation of the mechanical

problem, a formulation of the thermal problem, a description of the method of solution to the combined

problem followed by some parametric studies.

A. Formulation of Mechanical Problem

The analysis developed thus far is based on a two dimensional geometric model depicted in Figure 1. A

rolling - sliding contact is depicted with surfaces moving at speeds u1 and u2. A contact zone is formed

between x = 0 and x = 2a where the coating thickness is assumed to have a constant value h. The shear

stress r acting on the upper surface, will be in the direction shown when uI > U2. A class of rheological

5models in the form

I - / + ,'/-
-G--I , (1)G pI

I
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Figure 1. Schematic of geometry for traction analysis.I
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T I/ < T m

1r 1- min (TTM)-I/ IT'I
will be exam.,ied. In the above equation G represents a shear modulus, 'rm is a maximum limiting shear

stress, and Tc and p are constants and 4 is a function describing the creep characteristics of the coating.

If 4 is chosen so that its limiting form at small values of its argument approaches its argument then I would
reduce to a viscosity at low shear stress. In general all of the properties in the above model can be

dependent on temperature and pressure, however elastic properties will be somewhat less sensitive than
creep and plastic properties and will be taken to be constant. This includes both the shear modulus of the3coating, G, as well as the elastic properties of the substrate.

3The variation of pressure across a thin film will be negligible. For thin metallic films the thermal conductivity

will be sufficiently high so that the variation in temperature across the film will be small when compared with

the variation along the film. If properties are taken to be constant across the film (evaluated at either the
surface temperature, the centerline temperature or a mean temperature) then the velocity distribution will
vary linearly across the film and the strain rate will be given by = Au/h, where Au = u1 - U2 .

If the rolling speed ur = (u1 + u2)/2 is large compared with the slip rate Au, one may approximate the

shear stress derivative with i' = ur dT'/dx and the top part of Equation (1) may be written as

IU U r dt' ic (OTC) (2)
h dx(2)

IThe pressure and temperature dependence of properties rc, m'Ti and p may be expressed as

• - Tcoic( ,) - TM - -, I -

Iwhere TO, TmO, and go denote properties evaluated at the upstream surface temperature, To, and ambient
pressure. The quantities A and t are dimensionless forms of the pressure p, and temperature T, scaled on

3suitable reference quantities which will be selected later.

3 One may now introduce the dimensionless variables and parameters

_ -y  D "Our As--U S ±US (3)
TO a a Ga Ur hCoI

I



5U
to put Equation (1) in the dimensionless formI

D D d V- S - i-C () (Vic)1 (4)

3i - min(,r).

3 If we neglect shearing effects in the inlet ( < 0) then the boundary condition on Equation (4) is

3 - @ - 0. (5)

3 If properties were independent of pressure and temperature, or if the pressure and temperature were known

as functions of position then Equations (4) and (5) could be solved for any prescribed function €. Two

particular functions to be considered initially are €(C) = tanh'(C) (to be referred to as the arctan model),

which was used by Bair and Winer to characterize traction fluids and 4(C) = C , the Maxwell model which

has been used extensively in the analysis of viscoelastic behavior of materials.

The following representations will be implemented to characterize effects of property variations with

3 temperature and pressure:

I . 1100 p - Y(T - To) 1C + O 'm - Xc (6)

poe~PY~+ CO+X(T -TO) mI
In order to couple Equation (6) with Equation (4) the relationships must be provided for determining the

pressure p, and the temperature T, as functions of position x. Two types of pressure distributions that

should be considered are a uniform distribution (whose relevance will be discussed in Section III) and an

elliptical distribution corresponding to a Hertzian contact based on elastic properties of the substrate. This

I latter distribution which is illustrated in Figure 1 will be used In the initial analysis. Thus

P - Ph V1 1(-)2 (7)

where Ph is the maximum Hertz pressure easily determined from the Hertz formulas for line contact along

with the half width of the contact, a. The use of this relationship will be valid when a/h > > 1 and the

I
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I stiffness of the film in the contact zone is high compared those for the substrates.

3 B. Formulation of Thermal Problem

The amount to heat dissipated in the contact will depend on the shear stress distribution, hence the

temperature distribution cannot be prescribed apriori. A form of the energy equation must therefore be

coupled with the rheological equations given above. The energy equation will first be simplified based on

high Peclet number approximations.

I Since body 1 moves at a speed u1 , the residence time, tr, of a point on its surface in the contact zone

(0 < x < 2a) would be tr = 2a/u 1 . If the thermal diffusivity of body 1 is Yc1, then the thermal diffusion depth

3 into body 1 would be VI t r and the ratio of the length of the contact zone, 2a, to the diffusion depth

would be V-FP, where P1 = ula/ 1 is the Peclet number for substrate 1. At high Peclet numbers the

U aspect ratio for conduction is large and conduction in the x direction becomes negligible compared with

that in the y direction. Heat is thus transferred into the body by conduction and carried away by its motion.

The same argument can be applied to body 2 if it is moving rapidly. The coating, designated as region 3,

will have a high aspect ratio since it is assumed throughout the analysis that a/h > > 1. The energy

equation for region i may then be written as:

l aT - Ki a2T + R, 1-1,2,3 (8)

axl~ ay 2

I The heat generation rates per unit volume Ri will be 0 for the elastic substrates and will be the product of

the shear stress and the inelastic portion of the shear rate for the coating. Thus from Equations (1) and (2)

* the heat generation rate in the film is

jR3 . A % (9)

Continuity of flux implies continuity of KiT/y at y = 0, -h for 0 < x < 2a. The boundary conditions on

3 the temperature, T, are

U
I
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imT-T O  and T-T O @x-O (10)
lyl -I

Although Equations (8) - (10) can be solved in their present form, further simplification can be obtained when

the thermal resistance of the coating is small compared with that of either of the substrates. An upper

bound to the temperature rise from the surface to the center of the film, AT 3, may be obtained by neglecting

the effects of the convective motion of the film. The temperature rise in the film thus corresponds to that

due to conduction between two parallel plates for a material generating heat at a rate R3 which is

AT 3 = R3h2/(8K 3). At any point x along the film, the heat flux going into region 1 is q, = WR3h, where

* is the fraction of heat generated going into region 1. One may obtain an estimate of the surface

temperature rise by assuming R3 and hence q, to be independent of x. The thermal problem reduces to

3 that for a semi-infinite body moving past a uniform heat flux starting at x = 0 whose solution (or that for the

analogous time transient problem of a uniform flux applied to the surface of a stationary semi-infinite body3 at time t = 0) may be found in many heat transfer texts (ie. Carslaw and Jaeger3). If one divides AT 3 by

the surface temperature rise at the center of contact (x = 1) obtained from the solution to the above

problem, AT*, the following result is obtained:

AT 3  h K, _ P1

AT; a K3 8n

Although the Peclet number, P1 , is large, h/a will be very small for thin films and the above temperature ratio

will be small as long as the thermal conductivities of the film and the substrate are of the same order of

magnitude. This is frequently true for solid films, especially metallic films but is generally not true for liquid

lubricants which have much lower thermal conductivities. In the latter case temperature variations across

the film can be significantly larger than surface temperature rises.

I The above arguments provide the criteria for neglecting temperature rises in the film. Doing so, reduces

the thermal problem from a three region to a one region problem and more importantly provides justification

3 for property variations across the film. In the remainder of this analysis temperature rises across the film

will be neglected but the ability to handle the three region thermal problem at a later time will be retained.

I With the above approximations Equation (8) needs to be solved only In region 1, R1 = 0, and the boundary

condition at y - -- given in Equation (10) is replaced by the condition at y = 0 that KlaT/ay = h*R 3.

By equating temperatures at y = 0 and y = h and noting that q, + q2 = hR 3 , one may determine the flux

partition fraction

I
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__- __. (11)

One may now introduce the reference temperature Tr = Ursaco/K and the additional dimensionless

variables and parameters

tr q. l UrS C . a P h I -P h , Y yTr, I  X Tr (12)3 Tr Ur'c

iThe dimensionless energy equation for region 1 becomes

3 O _af 1 a2T (13)

a& P1 a 2

I with the boundary conditions on t( ,i1 )

I imt(E, 1) - t(O,r) - 0 (14)IT
and the surface flux loading

I
m 

' i m

C. Solution to Combined Problem

3 Equations (13) to (15) provide a statement of the thermal problem and Equations (4) and (5) along with the

prescribed function o, represent the mechanical problem. They are coupled through the property variation

3 relationships given in Equation (6) which may be expressed in dimensionless form as:

I
I
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YT -' m + P (16)
1 +AT

* where P = P/Ph"

A direct iteration scheme is used to couple the thermal problem with the mechanical problem. Initially the

mechanical problem is solved for isothermal conditions ( =0). This provides an initial shear stress

distribution i and from Equation (15) an initial flux loading, .( ) . One may now solve the thermal problem

3 for a new temperature distribution to evaluate temperature dependent properties from Equation (16) which

are then used in the next iteration of the mechanical problem. Convergence is achieved when the traction,

3 defined as integral of the shear stress across the contact zone, deviates by less than a prescribed tolerance

between iterations.

I At each iteration Equation (4) may be treated as a first order non-linear differential equation below the

limiting shear stress and an algebraic equation above it. At low pressures the Deborah number, D, which

multiplies the derivative, can become quite small and compared with the second term on the left side of

Equation (4). When this occurs Equation (4) assumes a very "stiff" behavior and explicit numerical

3 integration methods such as Runge-Kutta tend to become unstable. To avoid this problem, a semi-implicit

algorithm was implemented that has been widely used for stiff systems (see Press, et al.4 ) and is described

3 below.

Put the top part of Equation (4) in the form di'/d = F(&,i') , discretize the & interval of interest into

a grid, denote the values of , and i' at the jth point as &I and i', and use the average value of F to

increment ' from it value at to that at as follows:

V +1 1+ . 1 2 &J [ F(&j.+ I,{+ ) + F(] 3i'j •

3 If F( ji+, 1 ) in the above equation is approximated by

I F( 1~1.,' /1 .) - F( I + ,i'1 ) + ( i - )-

I
and the ensuing expression is solved for i' , the result is

I
U
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V + F(FI ,i' 1, ) + F( j,/j)
jI2_ aF

The above procedure is generally stable, provides quadratic accuracy and has proven to be very effective

for the problem at hand.

U Although the surface temperature t(&,0), that satisfies Equations (13) and (14), for any surface flux

distribution 41(E), can he determined with the convolution integral 3I

* T(~ 7OP - f d'

I it was found more expedient to adapt an existing finite difference routine written by the author 5. The

computer time is approximately the same and the finite difference approach provides sub-surface

3 temperatures without the need for further computation. In addition the finite difference solution is readily

amenable for use in treating the three region problem discussed previously as well as handling more general

* thermal boundary conditions such as convection or radiation from the surfaces.

i D. Parametric Studies

A number of parametric studies have been performed to show the influence of viscosity and shear modulus

on the nature of the shear stress profiles and the traction vs. slip rate behavior. A base case has been

selected which will be referred to as the low viscosity, low compliance case. Medium and high viscosity

cases will correspond to a factor of 10 and 100 increase in viscosity respectively. Medium and high

compliances will correspond to 10 and 100 fold decreases in shear modulus. Non dimensional parameters

for the base case are D = 3.2x10 4 , S = 6.4x10,3 s, 4i = 10 and X - 1 . The above parameters would

correspond to the physical parameters ur = 1000 in/sec, h = 6x10 "5 in, a = 6x10 "3 in, TCo = 6000 psi,

G = 1.2x10 5 psi, Ip0 = 2.3x10"6 reyns, a = 10"4 in2 /lb and Ph = 105 PSI-

The variation of the average shear stress, i-, with the slide to roll ratio, s, is shown in Figures 2 - 4 at various

compliances for low, medium and high viscosities respectively. (The average shear stress is defined as the

total load divided by the total contact area and i may be converted to a friction coefficient by dividing itI
U
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Figure 2. Traction vs. slip rate at low viscosity, arctan model, isothermal.I
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Figure 4. Traction vs. slip rate at high viscosity, arctan model, isothermal.
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I by nPh/( 4 0co), which has a value of 13.1 for all of the numerical examples presented in this section.) The

curves denoted by (1), (2) and (3) represent low, medium and high compliance respectively. These curves

were obtained with the use of the arctan model without the inclusion of thermal effects. The arctan model

provides an asymptotic approach to the limiting shear stress when X = I . A value, of X = .999 was

selected for use with the arctan model to provide a smooth transition but a definite cutoff point for the

limiting shear stress.

I Comparison of curves (1) and (2) in Figure 2 reveals that an order of magnitude drop in shear modulus

produces very little change in predicted traction at low viscosity and the behavior is predominantly visco-

plastic in nature. The behavior is somewhat different at high viscosity. Curves (1) and (2) in Figure 3 differ

significantly at low slip rates but approach each other at higher slip rates where plastic behavior

predominates. Curve (3) in Figure 4 lies fairly close to the corresponding curve in Figure 3 thus indicating

predominantly elastic-plastic behavior where an order of magnitude change in viscosity has very little effect

on traction. At high viscosity, low shear modulus and low slip rate, the behavior becomes primarily elastic

with the dimensionless average shear stress, i, approaching S/D corresponding to integration of

Equation (4) with (0 set equal to 0.

In all of the curves described above the average shear stress increased with increasing slide to roll ratio.

Inclusion of temperature dependent properties in some circumstances can actually show a decrease in

traction due to a drop in the limiting shear stress and viscosity as the coating heats up. In order to include

thermal effects, the additional parameters *, j, i and P1 must be prescribed. A value of * = .5 was

selected for the thermal partition fraction as would be expected at low values of s, if the same material were

used for both substrates. A value of K1 = 6 lb-sec/ 0 F corresponding approximately to the thermal

conductivity of steel was selected which results in a reference temperature of Tr = 3x10 3 s °F. Values

of y = .00667 and X. = .0167 were chosen which correspond to factor of two drops in viscosity and limiting

shear stress at temperature rises of 1000F and 600F respectively and result in dimensionless parameter

values of j = 20s and i = 50s. Finally a value of the Peclet number was chosen as P1 = 100 for the

base line case used in most of the parametric studies with a value of P1 = 500 for the high Peclet number

examples. The value for steel would lie approximately mid-way between these two cases. The effect of the

Peclet number on the shear stress profiles is shown in Figure 5.

* The variations of the average shear stress with slide to roll ratio analogous to Figures 2 - 4 but including

thermal effects are shown in Figures 6 - 8. At low slip rates, thermal effects are small as can be seen by

comparing the curves In Figures 6 - 8 with the corresponding curves in Figures 2 - 4. As the slip rate

increases thermal effects cause the curves to level off more rapidly and in some cases tractions are seen

I
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Figure 5. Effect of Peclet number on shear stress profile, low viscosity, low compliance, s = 0.1
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Figure 6. Traction vs. slip rate at low viscosity, arctan model with temperature dependent properties.
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Figure 7. Traction vs. slip rate at medium viscosity, arctan model with temperature dependent

properties.
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I to decrease with increasing slip rates. At higher viscosities, thermal effects become visible at lower slip

rates.

In order to investigate the sensitivity of the traction behavior to the rheological model, a series of parametric

studies were carried out with the use of the Maxwell model. The same parameters were used for both

models. Comparisons of the results obtained for the low and high viscosity cases with inclusion of thermal

U property variations are shown in Figure 9 and 10. The curves labelled (1-a) and (3-a) refer to the arctan

model for the low and high compliance cases respectively. The corresponding curves for the Maxwell model

are labelled (1-m) and (3-m). The Maxwell model, for the low viscosity case is seen to produce slightly

higher tractions since the creep resistance does not level off with increasing shear rate as does the arctan

model (see Figure 11). For the high viscosity case shown in Figure 10, however, the behavior is very nearly

5 elastic-plastic and the traction curves for the two models become nearly indistinguishable.

fl The arctan model avoids the abrupt change in slope of the stress strain rate curve at the yield point

characteristic of the Maxwell model. This abrupt change is not seen in the traction curves shown in Figures

9 and 10 because it is smoothed over by the integration process used in evaluating the average shear

stress. It can be seen clearly, however, in the shear stress profiles shown in Figure 12. The upper two

curves in the figure do not include the temperature variation in properties. In both cases the abrupt

transition of the Maxwell model to the limiting shear stress is evident.

* The corresponding dimensionless temperature profiles for the four curves in Figure 12 are shown in Figure

13. The upper curves were obtained by back calculating the temperature without including temperature

variation in properties which corresponds to the first iteration performed in the process of obtaining the

thermal solution. At the slip rate of s = .1 used in obtaining Figures 12 and 13, a value of t of 0.1

3 corresponds to a temperature rise of 300 F.
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Figure 9. Comparison of traction vs. slip rate between arctan model and Maxwell model at low
viscosity with temperature dependent properties.
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Figure 10. Comparison of traction vs. slip rate between arctan model and Maxwell model at high

viscosity with temperature dependent properties.
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Figure 11. Comparison of dimensionless shear stress, 'r, vs. shear rate parameter, S, between arctan

3 and Maxwell models under isothermal, inelastic conditions.
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Figure 12. Comparison of shear stress profiles for arctan and Maxwell models; low viscosity, low
compliance, s = 0.1.
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I III. TRACTIONS AT HIGH SLIP RATES 25

i The preceding analysis is has been applied to situations where the rolling velocity is high and the slip rates

are relatively low. Under these conditions, elasticity effects in the x direction can be important and a

substantial portion of the shearing can occur below the limiting shear stress. Under conditions of pure

sliding or high slide to roll ratios, yielding will occur over the major portion of the contact zone, elastic

strains in the film in the x direction will be relatively small and visco-plastic deformation will predominate.

This can be seen at slide to roll ratios as low as 5% as evidenced by the close proximity of curves (1) and

(2) in Figures 2 - 4 under a factor of 10 change in shear modulus. It can further be seen from Figure 4 that

at high viscosity the dimensionless average shear stress at a 10% slide to roll ratio falls within 5% of the

value of Iz = 1 which would occur if pure plastic behavior (T = rm) were to prevail over the entire contact

zone.

* A. Equations of Plasticity for a Thin Film

The plastic behavior of the lubricant may be analyzed in greater depth than in the previous sections by

treating the film as an ideal plastic-rigid material and later generalizing the analysis to include visco-plastic

behavior as used previously. The Levy-Von Mises Equations for plane strain deformation of a plastic-rigid

material will be presented and then reduced to a thin film form based an a small aspect ratio (a/h0 < < 1)

analogous to the reduction of the hydrodynamic equations to a lubrication environment.

Development of the Levy-Von Mises Equations can be found in many texts6' 7 and will not be derived here.

They consist of equilibrium relationships, stress - strain rate and continuity relationships and a yield criterion.

They will be presented here in terms of stresses and instantaneous velocities under conditions of plane

3 strain.

3 The equilibrium equations are given below:

ax a . 0 (17)

ax aY

I ( a (18)

Equations (17) and (18) represent equilibrium in the x and y directions respectively.

I
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3 An effective stress or flow stress, Zi, is used in both the stress - strain rate equations and the yield criterion.

A corresponding effective strain rate, 6, may also be introduced and expressed in terms of the instantaneous

velocities. These are both defined below:

!2
(ox aY + T2

I3 0- V ~ aVl2 ,(-au V)2  (20)

I The stress - strain rate equations for plane strain may be written in terms of the velocities as follows:

i au ( x (21)
ax 2arI
8V e (OX  GO(22)

8y 2ar

au + av 2 (23)

I aY ax Y
3 The continuity equation may be obtained by adding Equations (21) and (22)

It- (24)
0 x &y0

U Finally the Von Mises yield criterion may be expressed as

r o-V~k (25)

I where k is the shear yield stress for the coating.

The above equations will now be reduced to a thin film environment by estimating orders of magnitudes for

their various terms and neglect!ng terms of order ho/a compared with unity. Since the quantities a and hoI
I



I
represent reasonable scale factors for x and y in the coating, the dimensionless coordinates and t1

defined previously will be used here. A characteristic sliding velocity uo will be introduced which could be

the surface velocity for pure sliding or the slip velocity for a rolling-sliding contact at high slide to roll ratios.

This velocity will be used as the scale factor for u. An appropriate scale factor reflecting the order of

magnitude of v would be uoho/a as can be seen from inspection of the continuity equation. The reduced

velocities 0 = u/u o and 0 = av/(h0 uo) will now be introduced and will be assumed, along with the

coordinates and Y1 to be of the order of magnitude of 1. The effective strain rate 6, given in Equation (20)

may be written in terms of these variables as

ho L 2.( a) ( 0O& 2 + aa+h),1 O(26)
U0  a a a a " 2 ai

I The right hand side of Equation (26) was obtained by neglecting terms of the order of (ho/a)2 compared

with 1.

One may now substitute the approximate value for 6 obtained from the right hand side of Equation (26)

along with the value of Z given by Equation (25) for the corresponding quantities in Equation (23) and

express the result in terms of the reduced variables given above as follows:

U

Again assuming that oi1/o&1 is of order 1, one may neglect the second term on the left side of the above

equation and solve the resulting expression for r to obtain the approximate relationship

c - k (27)

I where the departure of r/k from 1 is of the order of (ho/a)2. Equation (27) is extremely important in that

it requires the coordinate shear stress to be equal to the shear yield stress everywhere in the coating within

the contact zone where plastic deformation occurs. Some of the ramifications of this property will be

discussed later.

A reference pressure po may be used as a scale for the normal stresses which can be the maximum HertzI
I
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pressure, Ph or any characteristic pressure associated with the normal loading in a non-hertzian contact.

One may now introduce the reduced stresses &x and y in Equation (21) and perform the same

substitutions for 6 and a as used in deriving Equation (27) above to obtain the approximate relationship

all a

I where 8 = (ho/a)(ko /po), ko is the shear yield stress of the coating at ambient pressure and temperature

to be used as a characteristic value and k = k/k o.

Since the reduced stresses and partial derivatives in the above equation are assumed to be of order 1 and

the coefficient on the right hand side is small, the two normal stresses are approximately equal ( ax - ay ).

Furthermore, since for the conditions of plane strain assumed here u z = (ax + ay)/2, a nearly hydrostatic

* state of stress will exist where

(Y fx -y - o z  -p (28)

The relative error in Equation (28) will be of the order of 8* = max[(ho/a) 2,8]. All of the arguments

presented thus far allow k to be a variable dependent on both temperature and pressure.

I One may substitute Equations (27) and (28) for the shear stress and normal stress in Equation (18) to obtain

the relationship for the pressure variation across the filmI
a_ .LZ 0 (29)

where i = r/ko - k. The above equation shows the usual result that the pressure does not vary

significantly across a thin film along with an indication of the relative error (of the order of 8). When the

same substitutions are introduced into Equation (17) the following expression is obtained:

a ! ak a (30)I Ph0 P0 a

Although the coefficient of oi/o-q will be large, ai/loq itself will be very small. If the shear yield stress

were constant then I = 1 and from Equation (27), i = 1 + terms of order (he/a) 2 and the right hand sideI
I
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I of Equation (30) would be of the order of 8. If k were to depend on pressure, even to the extent that

/l/oa were of order 1, the pressure variation across the film would still be of the order of 8* and the right

hand side of Equation (30) would at the most be of the order of max[(ko/p 0 )2,8 ] which will still be small.

The above arguments indicate that under ideal plastic conditions the pressure in the contact zone for a thin

* film under high shear is constant or

I a . 0 (31)

I An exception to the above relationship would occur if k were strongly dependent on temperature and severe

temperature gradients were to exist across the film. It was shown in the first section of this report that such

* behavior is not likely to occur due to shearing of a thin metallic film.

B. Deformation of an Elastic Substrate Under a Uniform Pressure

* The requirement that the pressure must be constant in the contact zone can significantly alter the shape of

the contact when elastic substrates are involved. For example, based on plane strain Hertz contact theory,

a cylinder of radius r will flattened in the interval 0 < x < 2a by an elliptical pressure distribution having an

amplitude Ph = aE/[2r(-v 2)]. If d is taken to be the displacement of the surface of the cylinder relative

to a line drawn tangent to the deformed cylinder at the center of contact (x=a), then d will be zero inside

the contact zone and rise sharply outside the contact zone. A dimensionless displacement defined as

a = 2rd/a 2 is plotted against for both the hertzian pressure distribution described above and for uniform

pressures over the interval 0 < x < 2a in Figure 14. The curve labeled (a) represents the hertzian

displacement. The curve labeled (b) corresponds to the displacement of the same surface under a uniform

pressure that integrates to the same load as the hertzian curve (a). The curve labeled (c) is the

displacement at the uniform pressure required to flatten the cylinder at the center of contact which may be

shown to be twice that used in obtaining curve (b).

Figure 1 depicts a situation where two rollers are loaded together in a hertzian contact and separated by

a constant coating thickness In the contact zone. This is generally assumed to occur when the coating

thickness is smaller than the overall elastic deformation of the substrates. The shape of the film thickness

profile would thus be the same as the sum of the elastic surface displacement profiles. If the sliding rate

is sufficiently high to cause a significant degree of yielding, the coating will not support a hertzian pressure

profile and the film thickness cannot remain constant. The variations in the substrate surface displacements

under a uniform pressure shown In Figure 14 can be large compared with the film thickness thereby

I
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Figure 14. Comparison of dimensionless surface displacement profiles under elliptical and uniformI pressure distributions.
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U producing major film thickness variations.

These film thickness variations have not been treated in the initial traction analysis presented in Section II

or in the elastohydrodynamic traction analyses which assume limiting shear behavior due to solidification

to occur with a constant film thickness. The above results indicate that substantial qualitative behavioral

discrepancies may result from separating the traction theory from the film thickness predictions when

* solidification or limiting shear behavior is predicted to occur.

C. Example of a Riqid Slider on a Substrate with a Visco-Plastic Coating

Further insight into the effects of plastic yielding at high slip rates may be obtained by considering a visco-

plastic film having a rheological model of the form

I / _ p ~1 - min(T',k) (32)ay

I A schematic of the film under consideration is shown in Figure 15. if at any point x, the shear stress in the

film is below the shear yield stress, k, then the equilibrium equations fc' the two dimensional thin film will

Ibe given by

I -a . _ p -0 (33)

If the film is assumed to be steady (w=O at y=h), one may integrate the continuity equation given by

3 Equation (28) across the film to obtain the expression

f udy- uoh. 
(34)

f 2

where 0 denotes the volumetric flow rate per unit transverse length and h* = 20/u o .

I Since from Equation (33) the shear stress must vary linearly across the film, it will have its maximum and

minimum values at the surfaces. It is thus possible for the shear stress at any given x to equal the shear

yield stress on one of the surfaces and fall below the shear yield stress and behave in a viscous fashion

between the surfaces thereby supporting a pressure gradient along the film. This would be manifested byI
I
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1 Figure 15. Schematic of variables for slider bearing analysis.
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I slip at the yield surface. If at any value of x, the shear yield is reached at both surfaces (in the same

direction) then the shear stress will be constant across the film and from Equation (33) as well as the

arguments presented in the preceding section, the pressure gradient along the film must vanish.

For the conditions of pure sliding assumed here, the boundary conditions on the velocity, u, under usual

conditions of no slip would be u=u o at y=O and u=O at y=h. If slip were to occur at y=O the surface

velocity of the coating may be represented as uo - Au 0 similarly the velocity may be represented as Auo

for slip at y=h.

3 One may now differentiate Equation (32) with respect to y, substitute Equation(33) for oT/ay, integrate the

resulting expression subject to the boundary conditions on u described above to obtain the velocity

3 distribution

I 1 -y(y-h) + (u0 - Auo )(h - y) + Au(3)
2p oX h h

Uwhich, with the exception of the slip velocities, is part of the procedure generally used in developing the

lubrication equations.

The shear stress due to viscous motion may be obtained by differentiating the velocity distribution. The

3 shear stresses at y=O, denoted by ro and at y=h by rh are given below:

SU 0  hap (AUo + AUh) (36)

- - -- - l
h 2 ax hI
U0  h ap (AUo + AUh) (37)

One may substitute Equation (35) for u in Equation (34) and integrate the resulting equation across the film

* to obtain the flow relationship

h3 °P u° (hh") Auh AU0h (38)
12p ax 2 2

I For the example here of pure sliding with a monatonically decreasing film thickness, four modes of shearing

I
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I will exist depending on the values of the surface shear stresses -o and -'rh in relation to the shear yield

stress k. (It should be noted that the minus signs are used here since an absolute value is required for

comparing the shear stress to the shear yield stress and for the coordinate system in this example with the

surface at v=O in motion, the shear stresses will in general be negative whir, iieir magnitudes approach

* the yield value.) These will be described below.

Case 1. No slip, -ro , -rh < k. The motion in this case will be purely viscous with

Au0 = Auh = 0 and Equation (38) reduces to

p 6u (h- h*)

Case 2. Slip aty=O, no slip aty=h, -r o = k, " h < k. One may set -To = k and Auh = 0

I in Equation (36) and solve for Au0 to obtain relationship

0 - u0 + h2 ap _ kh
2[L & IL

which may be substituted for Au in Equation (38) which is in turn solved for the pressure

gradientI
x" 31 o (kh2 /

I Case3. Slip at y=h, no slip aty=O, "rh = k, -o < k. One mayset-r h = kand Auo = 0

in Equation (37) which maybe solved for Auh and combined with Equation (38) as in Case

*2 to obtain the following relationships for the slip velocity and the pressure gradient:

3h 2 ap _kh

AU h - U0 -
2p N g

ax 2h3  Vu

3
I



I
U Case 4. Slip aty=O and y=h, -r0 = k, "rh = k. Here the interior of the film will be plastic

hence the pressure gradient must vanishI
ap 0

3 x

The relationships for the pressure gradients and surface shear stresses for the various cases may be put

in dimensionless form with the use of the following additional dimensionless variables and parameters

TO Toh ho h hi h * - I~o
io - -0 'h - - I 6" h- - I --

k k ak hok

The results are summarized below:

I ,Case 1

h 2 hi ,Case 2 (39)

2 3
I - h , Case 3

0 ,Case 4I
I+ h alP Case I

SFI 2~ ase
AO" 1 , Case 2 (40)

1 + Case 3

1 ,Case 4

I
II Case II 2 at,

ih " 1 - a  ,Case2 •(1

1 Case 3
1 ,Case 4
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3 The above equations provide an analytical procedure for determining the pressure gradient and surface

shear stress which is combined with a numerical procedure for determining the value of h* required to

satisfy the boundary conditions on the pressure that = 0 at = 0,1 which may be expressed

mathematically by integrating Equation (39)U
fa dE- 0 (42)

3 The solution algorithm first involves dividing the interval 0 < 2 1 into a discreet number of points and

selecting a trial value of fI*. Starting at the first point one may now compute the pressure gradient and

3 corresponding surface shear stresses using the Case 1 form of Equations (39) - (41) denoting the maximum

of io and h as ima. for Case 1. If 'max :5 1, one may save the value of the pressure gradient and

proceed to the next point. If for Case 1, "max > 1 and oaj/a > 0, the solution will either correspond to

Case 2 or Case 4. To determine which, compute the pressure gradient and shear stresses for Case 2. If

ih ! 1 proceed to the next point. If not, set the pressure gradient and shear stresses to their Case 4 values

and proceed to the next point. If for Case 1 imax > 1 and of/a < 0 the solution will either correspond

to Case 3 or Case 4. To determine which, compute the pressure gradient and shear stresses for Case 3.

If io - 1 proceed to the next point. If not, set the pressure gradient and shear stresses to their Case 4

values and proceed to the next point.

The above procedure may be used to determine the pressure gradient at every point which may then be

used for numerical integration of the left side Equation (42). The correct value of fI" will be the one that

satisfies Equation (42). For the present analysis, numerical integration was carried out using the trapezoidal

rule and fi* was determined using the Brent method3 . The combined analytical and numerical procedure

I used here is a reduction of a general purpose numerical algorithm developed by the author for treating

classes of one dimensional non-newtonian rolling-sliding contacts in powder lubrication8 .I
Once the pressure gradients are determined they may be integrated with respect to & to compute the

3 pressure distribution which may in turn be Integrated to predict the dimensionless load *. One may also

integrate io given by Equation (40) to compute the tractive force. These dimensionless forces are defined

I! as

I
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- W - f1d, f f i,,dE

a2k 0 ak 0

i where W and f denote normal and frictional forces per unit transverse length.

Computations have been carried out for the case of a convergent slider with a linear film thickness profile

3 given by

I - - ,1

3 The variation of the dimensionless load capacity, * and traction, with the viscosity-speed parameter 11,

are given in Figures 16 and 17 respectively at various values of the film thickness ratio R1. The parameter

ai is an index of the relative magnitude of the viscous shear force to the yield stress and is proportional to

both the viscosity and the sliding speed. At low values of 1 the flow will be entirely viscous in nature with

shear stresses below the yield stress everywhere in the film. At the points denoted by the small dots (-)

in Figure 16, the shear yield stress is reached on the stationary surface at the trailing edge where the film

thickness is smallest. As i2 is increased further the general level of shear goes up in the film and the zone

at which trailing edge slip occurs increases. At the points denoted by the circles (o) the shear yield stress

is reached and slip starts to occur on the moving surface near the leading edge of the film. As 4i continues

to increase, both slip zones expand inward until they eventually overlap. Points of incipient overlap are

indicated by the intersections of the various curves with the broken line in Figure 16.

The behavior of the film at values of 4i to the right of the broken line can be observed by examining the

pressure profiles shown in Figure 18 for the particular case of i =3 . The top curve corresponds to the

threshold value of gi where yield across the film occurs at one point. As 11 increases the fully plastic zone,

as manifested by the flat portions of the curves, expand and the pressures drop. As the sliding speed (or

viscosity) becomes high enough the plastic zone extends to the entire film and the pressure (hence the load

capacity) falls to 0. As can be seen from Figure 16, this complete loss of load capacity occurs at finite

3 defined values of ai which depend only on the film thickness ratio. This value of 1 which will be denoted

by 1" may be computed from Equation (39) for any smoothly convergent film as shown below.

Just before the entire film becomes plastic a small region will exist In the inlet where Case 2 shear prevails

and a region at the exit where Case 3 shear prevails. The pressure gradient must approach 0 as each of

these regions merge with the fully plastic region. As the length of the Case 2 inlet region becomes very
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I
I small the film thickness IN will approach i. By replacing Ia with am, h with fIh, and setting the pressure

gradient to 0 for Case 2 of Equation (39) one obtains the relationship

One may apply a similar argument to the exit region and replace I with am, h with 1, and set the pressure

gradient to 0 for Case 3 of Equation (39), then use Equation (43) to eliminate h* and solve the resulting

expression for I2

1 1+ h (44)
2I

Thus for any given inclination, Ah = hi - ho and minimum film thickness ho, the load capacity will vanish

3 when the product of the viscosity and sliding speed become high enough so that I > a*. The variation of

film thickness with speed or viscosity at fixed load and inclination can be obtained by plotting the variation

of ho/Ah = 1/(1h1 -1) with pIu 0/(kAh) = i/(fi1-1) at fixed values of WAh/(a2k) = W(fi1 -1). This may be

obtained from cross plots of the type of data used in generating Figure 16 and is shown for the par Lcular

case of W/(h 1 -1) = .04, in Figure 19.

The film thickness as shown by solid curve in Figure 19 is seen to increase with increasing speed (or

viscosity) at low speeds then reach a maximum and fall off suddenly as plastic yielding starts to occur. The

minimum film thickness then continues to decrease but at a less drastic rate. The ratio of the inclination of

3 the trailing edge film thickness at the right end of the solid curve is 16 to 1 which is essentially an edge

loading condition. In a separate computation stiffnesses were calculated and found to be negative for the

3 portion of the solid curve having a positive slope and lying to the right of the maximum, indicating an

unstable region. In a transient analysis one would expect a rapid drop in film thickness in this region at a

rate controlled by squeeze film effects. The dashed line in the figure indicates the film thickness vs. speed

behavior that would be predicted to occur in the absence of plastic yielding and demonstrates the drastic

effect that plastic yielding is predicted to have on film thickness at high viscosity or speed.
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* IV. SUMMARY AND CONCLUSIONS

Analyses are developed to predict the tractive forces that will occur in a rolling-sliding contact between one

body of a single material and a second substrate having a thin coating of solid lubricant. The materials are

3 assumed to be isotropic and conditions of plane strain are assumed to prevail. The film is taken to be thick

compared with asperity heights but very thin compared with contact lengths. The coating is assumed to

be soft compared with the substrates and the contact pressures are assumed to be high compared with the

shear yield stress of the coating.

An initial traction analysis is given in Section II which includes elastic, plastic, creep and thermal effects.

The analysis was designed to treat rolling dominated rolling-sliding contacts and incorporates an approach

developed for treating solidification in elasto-hydrodynamic contacts but oriented toward the characteristics

of solid films with the inclusion of a suitable thermal model. Parametric studies have been performed

3 showing the interaction of the various effects for two rheological models. The analysis has additional

flexibility that has not yet been exploited such as capability of handling more general thermal boundary

conditions, inclusion of non-hertzian pressure profiles and other rheological models. It is also highly

tractable and has the capability being extended to handle real three dimensional contacts with variable slip

rate etc., characteristic of real machinery.I
An analysis was formulated for a coating under sliding dominated conditions in Section III. Elasticity effects

for the coating were neglected and the Levy-Von Mises Equations for a plastic-rigid system were reduced

based on thin film approximations. The analysis shows that the coating will both be in a hydrostatic state

of stress and will not in general, be able to support a pressure gradient once yielding occurs. This latter

result imposes serious restrictions on the assumption of a constant film thickness used in Section I, as well

as References 1 and 2 and related elastohydrodynamic traction analyses that use limiting shear theory, at

high slip rates.

3 A simple viscoplastic model was applied to a coating on a rigid substrate moving under a converging rigid

slider which permitted yielding within the film or at the coating-substrate interfaces together with viscous

3 motion of the coating at stress levels below the yield point. When yielding occurred at both surfaces at any

given location then the film would be at a completely plastic state at that location hence unable to support

3 a pressure gradient. The results show that for any given lubricant, inclination and minimum film thickness

there is a critical speed that when exceeded results in a complete loss of load capacity. At a fixed load and

inclination, the film thickness is shown to drop off rapidly as significant yielding occurs resulting in extremely

small film thicknesses compared with those predicted in the absence of yielding.
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i In the case of hertzian contact, if the viscosity is highly pressure dependent as assumed in Section II and

the shear rates are sufficiently low so that yielding occurs over a relatively small portion of the contact zone,

near hertzian pressures (exception for a small amount of flattening near the center of contact) hence a

relatively constant film thickness in the contact zone can be maintained. As the shear rate becomes

sufficiency high to cause yielding to occur over a major portion of the contact zone a large constant

pressure region will develop and sharp variations in the film will occur in the case of compliant substrates

i of thin films which make it inappropriate to separate traction and film thickness theories.
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I V. RECOMMENDATIONS

The conclusions of the work performed thus far indicate that it is possible to predict tractions including

elastic, plastic, creep and thermal interactions under suitable conditions but more work is needed to extend

the results further into the plastic regime. In particular a combined film thickness anu traction theory is

needed to extend the present analysis as well as previous elastohydrodynamic analyses to account for the

* effects of lubricant plasticity on the film thickness profile.

While the results of this study indicate the feasibility of a continuum approach to certain modes of solid

lubrication, the scope needs to be enlarged to treat non-isotropic lubricants such as MoS2, as well as three

dimensional and transient contacts characteristic of real machinery.I
Predictions of small film thicknesses do not necessarily imply failure of the solid lubricant. When the local3 coating thickness is of the same order of magnitude or smaller than asperity heights on the substrate, they

will interact both with the coating and with each other. These interactions need to be considered in

conjunction with the lubricant model to provide a general theory that bridges the gap between thick films

and classical friction theory.

I Experimental verification is badly needed both regarding the predicted variations in film thickness at high

slip rates and the range of validity assumptions used in developing the initial traction model in Section II.

It will also provide guidance for treating the recommended theoretical extensions. In addition, the various

lubricant models require property data which may be extracted from experiments under laboratory

I conditions simulating actual contacts when primary laboratory data are not readily obtainable.
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